Length-Fuzzy Subalgebras in BCK/BCI-Algebras

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

REDEFINED FUZZY SUBALGEBRAS OF BCK/BCI-ALGEBRAS

Using the notion of anti fuzzy points and its besideness to and nonquasi-coincidence with a fuzzy set, new concepts in anti fuzzy subalgebras in BCK/BCI-algebras are introduced and their properties and relationships are investigated.

متن کامل

On Fuzzy Dot Subalgebras of Bch-algebras

We introduce the notion of fuzzy dot subalgebras in BCH-algebras, and study its various properties. 2000 Mathematics Subject Classification. 06F35, 03G25, 03E72.

متن کامل

Fuzzy Translations of Fuzzy Subalgebras in BG-algebras

In this paper, the concepts of fuzzy translation to fuzzy subalgebras in BGalgebras are introduced. The notion of fuzzy extensions and fuzzy multiplications of fuzzy subalgebras are introduced and several related properties are investigated. In this paper, the relationships between fuzzy translations and fuzzy extensions of fuzzy subalgebras are investigated.

متن کامل

L-Fuzzy β−Subalgebras of β−Algebras

In this paper, we introduce the notion of L-fuzzy β−subalgebras on β−algebras and investigate some of their properties. Mathematics Subject Classification: 03E72, 06F35, 03G25

متن کامل

Hesitant Fuzzy Soft Subalgebras and Ideals in BCK/BCI-Algebras

As a link between classical soft sets and hesitant fuzzy sets, the notion of hesitant fuzzy soft sets is introduced and applied to a decision making problem in the papers by Babitha and John (2013) and Wang et al. (2014). The aim of this paper is to apply hesitant fuzzy soft set for dealing with several kinds of theories in BCK/BCI-algebras. The notions of hesitant fuzzy soft subalgebras and (c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematics

سال: 2018

ISSN: 2227-7390

DOI: 10.3390/math6010011